
www.manaraa.com

Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-2003 

Building Blocks for Time-Resolved Laser Emission in Mid-Infrared Building Blocks for Time-Resolved Laser Emission in Mid-Infrared 

Quantum Well Lasers Quantum Well Lasers 

Gabriel D. Mounce 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Plasma and Beam Physics Commons 

Recommended Citation Recommended Citation 
Mounce, Gabriel D., "Building Blocks for Time-Resolved Laser Emission in Mid-Infrared Quantum Well 
Lasers" (2003). Theses and Dissertations. 4249. 
https://scholar.afit.edu/etd/4249 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact richard.mansfield@afit.edu. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4249&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/205?utm_source=scholar.afit.edu%2Fetd%2F4249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4249?utm_source=scholar.afit.edu%2Fetd%2F4249&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


www.manaraa.com

BUILDING BLOCKS FOR TIME-RESOLVED LASER EMISSION IN

MID-INFRARED QUANTUM WELL LASERS

THESIS

Gabriel D. Mounce, First Lieutenant, USAF
AFIT/GE/ENP/03-01

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



www.manaraa.com

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.



www.manaraa.com

AFIT/GE/ENP/03-01

Building Blocks For Time-Resolved Laser Emission In Mid-Infrared
Quantum Well Lasers

THESIS

Presented to the Faculty

Department of Engineering Physics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Gabriel D. Mounce, B.S.

First Lieutenant, USAF

25 March 2003

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



www.manaraa.com

AFIT/GE/ENP/03^01 

Building Blocks For Time-Resolved Laser Emission In Mid-Infrared 

Quantum Well Lasers 

Gabriel D. Mounce, B.S. 

First Lieutenant, USAF 

Approved; 

Michael A. Marciniak {Chairman) 

Robert L. Hengehold ("Member) 

l4 N^Q3 

date 

date 

C'-"'^^      James A. (Member) date 



www.manaraa.com

Acknowledgements

This project, the AFIT curriculum, and life as a military student have been

the toughest challenges I’ve faced so far. Many thanks are in order to those people

who helped to get me through it. First and foremost I want to sincerely thank my

advisor, LtCol Michael Marciniak, whose guidance, encouragement, and flexibility

allowed me to successfully complete the program. His continued faith in me was

instrumental in my achieving a Master’s degree. I would like to thank LtCol James

Lott and Professor Robert Hengehold for their technical support and advice. To Greg

Smith, Mike Ranft, and Rick Patton I owe considerable thanks for their never-ending

assitance in the lab and their ability to keep things running in spite of myself. Other

key players that I would not have got along without are Nathan Abel and Kevin

Cumblidge whose assistance in the lab allowed me to keep up with my course work.

My “computer lab buddies” also deserve thanks for keeping my spirits high.

I want to thank those who supported this work to include Dr. George Turner

of MIT/Lincoln Labs and Dr. Ron Kaspi, Dr. Andrew Ongstad, and Mr. Mike

Tilton of AFRL/DELS who supplied semiconductor samples and technical advice.

Additionally, I want to thank Bill Siskaninetz of AFRL/SND for processing the

samples.

Finally, all my love and deepest gratitude goes to my wife for her never-ending

encouragement, undying patience, and eternal support. I could not have made it

without her. And lastly, thanks be to God for watching over me and getting me

through.

Gabriel D. Mounce

iv



www.manaraa.com

Table of Contents

Page

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1-1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . 1-2

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . 1-3

1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . 1-4

1.5 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4

1.6 Main Results . . . . . . . . . . . . . . . . . . . . . . . 1-4

1.7 Thesis Overview . . . . . . . . . . . . . . . . . . . . . 1-5

II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

2.1 Quantum Wells . . . . . . . . . . . . . . . . . . . . . . 2-1

2.2 Structure Types . . . . . . . . . . . . . . . . . . . . . 2-4

2.3 Lasing Condition . . . . . . . . . . . . . . . . . . . . . 2-5

2.4 Laser Cavity . . . . . . . . . . . . . . . . . . . . . . . 2-7

2.5 Ghost Modes . . . . . . . . . . . . . . . . . . . . . . . 2-10

v



www.manaraa.com

Page

III. Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

3.1 Upconversion Theory . . . . . . . . . . . . . . . . . . . 3-1

3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . 3-4

3.2.1 Laser Source . . . . . . . . . . . . . . . . . . . 3-4

3.2.2 Beam Paths . . . . . . . . . . . . . . . . . . . 3-8

IV. Samples and Sample Preparation . . . . . . . . . . . . . . . . . 4-1

4.1 Sample Description . . . . . . . . . . . . . . . . . . . . 4-1

4.2 Sample Preparation - Etching . . . . . . . . . . . . . . 4-7

4.3 Sample Preparation - Cleaving . . . . . . . . . . . . . 4-8

V. Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 5-1

5.1 Modelling Results . . . . . . . . . . . . . . . . . . . . . 5-1

5.2 PL Results . . . . . . . . . . . . . . . . . . . . . . . . 5-2

5.3 Spontaneous Emission Results . . . . . . . . . . . . . . 5-4

5.4 Stimulated Emission Results . . . . . . . . . . . . . . . 5-8

5.5 Lasing Results . . . . . . . . . . . . . . . . . . . . . . 5-14

5.6 Gain Calculation . . . . . . . . . . . . . . . . . . . . . 5-14

5.7 Upconversion Results . . . . . . . . . . . . . . . . . . . 5-22

VI. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . 6-2

Appendix A. Calculation of Non-Linear Crystal Tilt Angle . . . . . A-1

Appendix B. Gain Calculation Programs for TE and TM Modes . . B-1

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIB-1

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VITA-1

vi



www.manaraa.com

List of Figures

Figure Page

2.1. (a) Schematic energy diagram of a semiconductor QW structure.

Ea and Eb are the energy gaps that make up the barriers and

well. E1 and E2 are the first two energy states confined in the

well of width L. (b) Density of States in a quantum well and

bulk material. The dashed curve represents the 3-D density of

states for bulk material while the solid line is the 2-D density

states for a particle confined to a quantum well. [30] . . . . . 2-2

2.2. Type-I and type-II multiple quantum wells. Type-I has spatially

aligned quantum wells. Type-II has spatially offset quantum

wells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

2.3. Active region layer formed between wider bandgap cladding lay-

ers. The lower indices of refraction of the cladding layers confine

optical emission. [30] . . . . . . . . . . . . . . . . . . . . . . 2-5

2.4. Three-layer slab-waveguide and zig-zag ray model [2]. . . . . 2-8

2.5. Refractive indices and field profiles in a three-layer dielectric

slab waveguide [2]. . . . . . . . . . . . . . . . . . . . . . . . 2-9

2.6. Layer schematic of laser device showing “ghost” modes (red)

and active region mode (blue). Red arrows are ray traces rep-

resenting “ghost” mode oscillation and blue arrows represent

main lasing mode oscillation. [23] . . . . . . . . . . . . . . . 2-10

2.7. Plot of quantum efficiency versus cavity length in a antimony-

based QW device. The overall QE is seen to be higher with

“ghost” modes present (+) than without (4). [23] . . . . . . 2-11

2.8. Effective index, neff , and modal gain, Gmod, plots versus cap

layer thickness, d for two cladding layer thicknesses of (a) 0.6

µm and (b) 0.8 µm. Resonance points shown where two TE

mode branches of neff plots come close to intersecting. [14] . 2-13

vii



www.manaraa.com

Figure Page

3.1. Wave mixing resulting in the time resolution of the lumines-

cence. (a) Depicts the luminescence curve over time. (b) Rep-

resents the pump beam at some delay time τ . [18] . . . . . . 3-2

3.2. Upconverted signal in terms of wavevectors [18]. . . . . . . . 3-3

3.3. Schematic of experimental setup showing the cryogenic mount,

source leg, pump leg, and signal beam [12]. . . . . . . . . . . 3-6

3.4. (a) Pulse width of Ti:Sapphire laser. FWHM is measured to

be ∆tm = 207 fs. The actual pulse width is ∆ta = 134 fs after

multiplying by the correction factor 0.648. (b) Spectral width

of Ti:Sapphire pulse of 2.5 nm. . . . . . . . . . . . . . . . . . 3-7

3.5. Photoluminescence configuration. The flat surface of the sam-

ple mount is positioned normal to the off-axis, parabolic mir-

ror. The photoluminescence generated is collected by a series

of CaF2 lenses and sent to a spectrometer for evaluation. [12] 3-11

3.6. Laser configuration. The laser source beam is directed into the

cryostat from the side, passing through a 200 mm biconvex lens

and a 100 mm cylindrical lens forming a horizontal stripe. The

surface normal of the cold finger is positioned at a slight angle

to the incoming beam. . . . . . . . . . . . . . . . . . . . . . . 3-12

3.7. Laser source focused to a horizontal stripe. Profile along x axis

shows a beam diameter at the 1/e2 point of 2.049 mm. . . . 3-13

3.8. Experimental set up in the TRPL experiment. The Ti:Sapphire

laser creates a 130 fs pulse that is split into two paths. The

laser signal beam travels through a delay stage before excit-

ing the sample. Luminescence is collected and mixed with the

pump beam in the KTA crystal. The upconverted beam is then

directed to the spectrometer and photon counter. [12] . . . . 3-14

4.1. Sample 201-056 energy band and refractive index diagram drawn

to scale. This sample is a type-II, dilute waveguide structure.

[18, 27,35,38] . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

viii



www.manaraa.com

Figure Page

4.2. Energy band and refractive index diagram for samples R1-73

and R2-43 drawn to scale. These samples are type-II, dilute

waveguide structures. [17, 23,27,38] . . . . . . . . . . . . . . 4-3

4.3. Sample R0-62 energy band and refractive index diagram drawn

to scale. This sample is a type-II, tight waveguide structure.

[17, 23,29,38] . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

4.4. Sample B energy band and refractive index diagram drawn to

scale. This sample is a type-I, tight waveguide structure. [12,35] 4-5

4.5. Tight waveguides having cladding layers shown in gray and di-

lute waveguide having no cladding layers. . . . . . . . . . . . 4-6

4.6. Shape of GaSb test piece used for etch study with approximate

locations of 1813 photoresist. . . . . . . . . . . . . . . . . . . 4-8

5.1. Model of TE modes in sample R1-73. Only ghost modes are

predicted as shown by the two lowest loss modes. [23] . . . . 5-1

5.2. Model of TE modes in sample R2-43. Again, only ghost modes

are predicted as shown by the two lowest loss modes. [23] . . 5-2

5.3. PL Spectra of the five different samples investigated. Relative

intensities are not to scale. . . . . . . . . . . . . . . . . . . . 5-3

5.4. Spectra of Sample R0-62 taken as the spectrometer slit width

is varied at a pump power of 720mW and temperature of 77K.

No lasing or mode development is seen. . . . . . . . . . . . . 5-5

5.5. Spectra of Sample R1-73 taken as the spectrometer slit width

is varied at a pump power of 720mW and temperature of 77K.

No lasing or mode development is seen. . . . . . . . . . . . . 5-6

5.6. Spectra of Sample R2-43 taken as the spectrometer slit width

is varied at a pump power of 720mW and temperature of 77K.

No lasing or mode development is seen. . . . . . . . . . . . . 5-7

5.7. Spectra of Sample 201-056 taken at 80 and 10 K with 2.37 W

excitation power. Longitudinal Mode development is seen along

the crests of the two spectra. . . . . . . . . . . . . . . . . . . 5-9

ix



www.manaraa.com

Figure Page

5.8. Close-up of spectra showing a high degree of mode overlap, con-

firming repeatability and thus mode formation. The longitudi-

nal mode spacing is 170.75±1.36 GHz. . . . . . . . . . . . . . 5-10

5.9. Spectrum of Sample B taken at 77 K with 2.37 W excitation

power. Longitudinal mode development is seen along the crests

of the spectrum. The mode spacing is 169.37±0.58 GHz. . . . 5-11

5.10. Spectra of Sample 201-056 taken as the source beam power is

decreased from 2.37 W to 0.1 W. . . . . . . . . . . . . . . . . 5-12

5.11. Close-up of Sample 201-056 spectra showing longitudinal modes

ceasing to occur at 0.2 W. . . . . . . . . . . . . . . . . . . . 5-13

5.12. Spectra of Sample B taken at temperatures of 77K and 5K.

Lasing is seen to occur at 5K as evident by the large intensity

spike. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15

5.13. Spectra of Sample B taken at a temperature of 8K under varying

pump powers. Saturation occurs at a pump power of 1.5 W and

laser output is decreased at higher pump powers. . . . . . . . 5-16

5.14. Gain curves of Sample 201-056 at 80K for the TE and TM modes. 5-19

5.15. Gain curves of Sample B at 77K for the TE and TM modes. . 5-20

5.16. Gain curves of Sample B at 8K for the TE and TM modes. . 5-21

5.17. TRPL signal of sample B on 7 Nov 02. . . . . . . . . . . . . . 5-23

x



www.manaraa.com

List of Tables

Table Page

3.1. Calculated spot sizes of 200 mm and 300 mm lenses in the x, y,

and radial directions. . . . . . . . . . . . . . . . . . . . . . . 3-8

5.1. Characteristics of samples under investigation. . . . . . . . . 5-2

5.2. Spectrometer slit widths and grating increments used in data

acquisition of emission spectra. . . . . . . . . . . . . . . . . . 5-4

xi



www.manaraa.com

List of Abbreviations

Abbreviation Page

DH Double-Heterostructure . . . . . . . . . . . . . . . . . . . 1-1

QW Quantum Well . . . . . . . . . . . . . . . . . . . . . . . . 2-1

MQW Multiple Quantum Wells . . . . . . . . . . . . . . . . . . 2-4

TEM Transverse Electro-Magnetic . . . . . . . . . . . . . . . . 2-7

QE Quantum Efficiency . . . . . . . . . . . . . . . . . . . . . 2-11

TRPL Time-Resolved Photoluminescence . . . . . . . . . . . . . 3-1

PL Photoluminescence . . . . . . . . . . . . . . . . . . . . . 3-1

SFG Sum Frequency Generation . . . . . . . . . . . . . . . . . 3-1

KTA KTiOAsO4 . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

SHG Second Harmonic Generation . . . . . . . . . . . . . . . . 3-5

FWHM Full Width at Half Maximum . . . . . . . . . . . . . . . 3-5

PMT Photo-Multiplier Tube . . . . . . . . . . . . . . . . . . . 3-5

MIT Massachusetts Institute of Technology . . . . . . . . . . . 4-1

AFRL/DE Air Force Research Lab/Directed Energy Directorate . . 4-1

AFRL/SND AFRL, Sensors Directorate, Aerospace Components Division 4-7

RIE Reactive Ion Etch . . . . . . . . . . . . . . . . . . . . . . 4-7

sccm Standard Cubic CM . . . . . . . . . . . . . . . . . . . . . 4-8

OPO Optical Parametric Oscillator . . . . . . . . . . . . . . . 6-2

xii



www.manaraa.com

AFIT/GE/ENP/03-01

Abstract

The objective of this research is to improve the performance of mid-infrared

semiconductor quantum-well lasers. Lasers operating in the mid-infrared are use-

ful for many Air Force applications which include infrared (IR) countermeasures in

particular. Countermeasure applications require lasers that are compact, and able

to emit at high powers while operating at room temperature. Limits to power in-

creases are seen in the transverse modal development of laser oscillation. These

modes typically form in the waveguiding active region contributing to the laser

output. However, competing modes outside of this region also develop when the

confining structural layers have the right characteristics. These competing modes

may draw power away from the main lasing mode, causing efficiency to drop. There-

fore, theoretical models indicate that these “ghost” modes should be extinguished.

The goal of this work is to incorporate antimony-based semiconductor laser devices

into a time-resolved photoluminescence (TRPL) experiment to examine modal de-

velopment immediately after excitation. TRPL utilizes a non-linear wave mixing

technique known as frequency upconversion to resolve sub-picosecond luminescence

occurrences after excitation. Modification to the experiment is performed to produce

laser emission from five mid-IR semiconductor laser samples. Both spontaneous and

stimulated emission spectra are recorded. Alignment of the experiment is also car-

ried out to produce upconversion of the PL signal to prepare for the incorporation

of laser emission.

InAs/InGaSb quantum well laser devices were studied in four categories: di-

lute and tight waveguide structures, and type-I and type-II energy-band geometries.

Models are obtained to predict mode development and possible ghost mode reso-

nance in the dilute waveguide case. It is seen here that dilute waveguides generate

ghost modes because of the evanescent leakage and subsequent trapping of optical

radiation in the cap and substrate layers. This data is then compared to the actual

xiii
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behavior of the samples. Lasing is found to occur in the type-I, tight-waveguide

case at low temperatures, while only sub-threshold emission is seen for the type-

II dilute-waveguide. This is attributed to the absorption of the optical pump in

the GaSb cap layer of the type-II device. Samples having no cap layers to prevent

absorption showed only spontaneous emission as was predicted by modelling. The

longitudinal mode spacing in emission spectra was measured and found to coincide

with calculated values. Gain calculations were also performed using the Fabry-Perot

resonances for the samples producing stimulated emission.

xiv
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Building Blocks For Time-Resolved Laser Emission In Mid-Infrared

Quantum Well Lasers

I. Introduction

Laser devices emitting in the infrared wavelength window of 3 to 5 µm are

important to Air Force applications such as electronic countermeasure devices, trace

gas detectors, laser radar, and for target recognition [1,5,7,10,20,22,24,34,39,40]. As

such, devices that can produce high emission output with minimal power consump-

tion while operating at room temperature are desired. Lead-salt structures produce

such radiation, but they cannot operate at room temperature due to low thermal

conductivity [6,20,40]. HgCdTe double-heterostructure (DH) devices have also pro-

duced emission in this window, but suffer from low thermal conductivity because of

the high mobility of the Hg atoms [5, 6, 20]. Therefore, structures that are stable,

compact, and able to produce this type of radiation at low threshold currents are

required. Structures with such potential are III-V, antimony-based quantum-well

lasers. These semiconductor structures show good physical and thermal character-

istics, making them desirable for use in Air Force applications.

1.1 Motivation

Testing of this class and type of semiconductor device is now especially im-

portant to Air Force war fighters as new technology is needed for countermeasure

systems in the defense of aircraft. Small, lightweight systems that can be mounted

unobtrusively on aircraft and that can effectively defeat enemy anti-aircraft missiles

are highly desired. Small, semiconductor laser devices are ideal for this purpose.

Once fully realized, these devices would be mounted to provide all-aspect protection

of aircraft using minimal power consumption. [31]

1-1
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1.2 Background

To date, III-V materials have been used significantly in the manufacture of

laser devices showing excellent results near 2 µm. Emitting beyond this, however,

has proven to be a challenge. The reasons for this are most readily attributed to

the type of arrangement and composition of the laser structure. Understanding how

these attributes affect the lasing process will give the knowledge needed to increase

the lasing wavelength beyond this 2 µm barrier.

Increasing the performance of III-V semiconductor lasers requires understand-

ing of how lasing develops within the structure. The devices studied here are

antimony-based, strained multiple-quantum-well (MQW) structures. The strained

quantum-well arrangement is devised to optimize carrier confinement, which is the

key to achieving room temperature lasing at low threshold currents. Quantum wells

are effective confinement structures because of the low energy states carriers see

within the wells, as compared to the surrounding material. Therefore, carriers, once

injected, are funnelled into the wells where they recombine, producing radiation.

The thicknesses of the different layers of semiconductor material forming the wells,

barriers (separation layers between wells), cladding regions (layers surrounding the

well/barrier layers) and cap layers (for metal contacting) are engineered to achieve

the best possible performance.

Lasing takes place in the active region made up of the quantum–well/barrier

layers so it is necessary to understand how the thicknesses aid or detract from the

lasing process. Research performed at the University of New Mexico has shown

that different layer thicknesses cause different lasing modes to dominate within the

active region. In particular, they find that normal TE modes outside the active

region come into existence and compete with the lasing modes. These modes are

referred to as “ghost modes” and are found to detract from the lasing process. They

occur as the result of varying layer thicknesses within the device structure. This

research shows that certain layers within the structure are coupled to one another,

1-2
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i.e., the active region waveguide is coupled to the buffer-substrate layer waveguide

or the active region waveguide is coupled to the cap layer waveguide. When energy

is injected, these ghost modes develop taking energy from the lasing mode, which in

turn requires more energy input to support lasing. [13–15]

It is shown that the ghost modes depend on the thicknesses of the coupled

layers. Normal modes depend on the effective refractive index and on the modal

gain. These parameters are used to find the resonance points of the normal modes.

Resonance points depend on the layer thicknesses of outside coupled waveguides and

on the thickness of separating layers. The resonance points determine where the

normal modes are ghost modes and where they coincide with the lasing mode. The

lasing mode does not correspond to a single normal mode, but to a series of different

normal modes of increasing mode order. At each resonant point, the normal mode

is part of the lasing mode (in the active region), contributing to output, or it forms

outside the active region (ghost mode). In other words, the modal intensity peak

varies in location within the laser structure at each resonant point. If this peak is in

the active region, it is a lasing mode, otherwise it is a ghost mode. [13–15]

1.3 Problem Statement

Although calculated theoretically, the development of lasing and ghost modes

in quantum-well structures is not well understood. Therefore, it is important to

see how modes develop within the structure to determine what affect they have

on the lasing process. We hypothesize that the dynamics of laser emission can be

seen in the first few nanoseconds after lasing threshold is reached. By studying the

spectral evolution of the lasing emission, modal dynamics can be studied which gives

information necessary to optimize the structure for low threshold current and high

output power.

1-3
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1.4 Approach

To investigate how modes develop within the laser structure, a frequency up-

conversion experiment will be used. Upconversion is also known as sum frequency

generation, where two incoming light waves are mixed within a nonlinear crystal to

form a third. Upconversion will be used for this experiment because of its ability

to render sub-picosecond resolution. This kind of temporal resolution is needed as

radiative (lasing) processes occur in the first few nanoseconds after excitation. The

experiment and experimental setup will be almost identical to that used by Captain

Steve Gorski for his AFIT thesis where he performed frequency upconversion on

photoluminescence emission [18]. This research attempts to use this technique on

laser emission.

1.5 Scope

To utilize upconversion to see modal processes, the experiment is modified to

incorporate laser structures. To do this, the semiconductor structures investigated

are first characterized for peak emission. They are then formed into laser devices

and inserted into the experiment. The experimental setup is next modified to stim-

ulate lasing by altering the optical pump beam used to excite the devices. Finally,

upconversion is verified using the luminescence setup to prepare for laser emission.

1.6 Main Results

The results of theoretical models are presented indicating that no detectable

lasing is expected from the three samples having their cap layers removed. This is

verified by luminescence data. The modification to the upconversion experimental

setup was shown to produce stimulated emission from a type-I and type-II, antimony-

based quantum-well structure. This setup was also shown to produce lasing in a

type-I structure at low temperatures.
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Upconversion was achieved using the photoluminescence of the type-I structure

as a baseline. However, the signal detected was marginal which is attributed to poor

optical alignment. No analysis of the signal was possible.

1.7 Thesis Overview

Chapter II provides the background theory pertaining to semiconductor laser

devices, to include laser production and mode theory. Chapter III details the TRPL

experiment, upconversion theory, and the three experimental setups used, which

include modifications for inclusion of laser devices. Chapter IV presents the five

semiconductor samples investigated including their material and structural makeup.

This chapter also presents transformation of the samples into laser structures. The

results and analyses of these efforts are included in Chapter V. Chapter VI sum-

marizes the findings of experimentation and includes recommendations for future

work.
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II. Background

The key to attaining the magnitude of output power desired at room temperature

in mid-IR semiconductor lasers is the confinement of optical carriers in such a way

as to ensure radiative recombination. These carriers are electrons in the conduction

band and holes in the valence band of a semiconductor that have the potential to

recombine and produce a photon. The recombination of electrons and holes that

does not produce radiation is known as non-radiative recombination. The type of

carrier confining structures that are examined here are quantum wells.

2.1 Quantum Wells

A quantum well (QW), shown in Figure 2.1, is a double heterostructure whereby

a narrow bandgap semiconductor is sandwiched between two higher bandgap semi-

conductors. This configuration forms a rectangular quantum potential well from the

energy bands. When the thickness of the narrow bandgap material, L, is on the

order of the de Broglie wavelength of a thermalized electron (λ = h/p, where h is

Planck’s constant and p is the momentum of the electron), quantum size effects oc-

cur forming quantized energy states within the well [28]. These states represent the

probability of having an electron or hole in any respective position within the well

and are found from the solution to the time independent Schrödinger wave equation

in two dimensions. The resulting eigenvalues (energy states) are given by:

E(n, kx, ky) = En +

(

~
2

2m∗

n,p

)

(

k2
x + k2

y

)

(2.1)

where En is the nth energy state of the z-component (normal to the well layer), m∗

n,p

is the electron or hole effective mass, ~ is the reduced Planck’s constant, and kx and

ky are the crystal momentum in the unconfined x and y directions. [28, 30]
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Figure 2.1 (a) Schematic energy diagram of a semiconductor QW structure. Ea

and Eb are the energy gaps that make up the barriers and well. E1 and E2 are the
first two energy states confined in the well of width L. (b) Density of States in a
quantum well and bulk material. The dashed curve represents the 3-D density of
states for bulk material while the solid line is the 2-D density states for a particle
confined to a quantum well. [30]
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The number of available quantum states in a given energy interval of a QW is

given by the density of states function. Because of the quantized energy states in a

QW, this function is

g(E)dE =
[

m∗

n/(π~
2)
]

dE (2.2)

which forms a stairstep function beginning at the lowest energy states in the con-

duction and valence bands (shown in Figure 2.1). Because energy is quantized, there

are no allowed states at other than the eigenvalue solutions. Thus, the function does

not form a smooth parabolic band as in bulk material. This leads to wavelength

emission being confined to narrow linewidths. [2, 28]

The experiment presented in Chapter III utilizes optical pumping to excite

electrons into the conduction band of the compound semiconductor. Once excited,

the electrons (and corresponding holes) are scattered into the wells because of the

lower energy states that reside there. Thus, QW’s are effective confinement struc-

tures, trapping carriers where they are more likely to recombine producing photons.

The peak wavelength of light emitted is determined by the energy difference between

the lowest level electron and hole energy levels within the wells. [2]

When excited, the carriers are put into a state of nonequilibrium. At equilib-

rium, the carrier densities are calculated using Fermi-Dirac statistics, which define

the equilibrium level as the Fermi level. In nonequilibrium, the excited carriers

quickly equilibrate with themselves, not the semiconductor crystal lattice putting

them in a “quasi-equilibrium”. The nonequilibrium carrier distribution functions

are therefore given by the “quasi-Fermi” functions

fn(E) =
1

1 + exp
(

E−Efn

kBT

) (2.3)

1− fp(E) =
1

1 + exp
(

E−Efp

kBT

) (2.4)
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for electrons and holes, respectively. Here, T is temperature, kB is Boltzman’s

constant, E is energy, and Efn and Efp are the quasi-Fermi levels. These functions

give the carrier concentration for any energy state within a semiconductor. [2]

2.2 Structure Types

As mentioned above, the narrow bandgap material form the wells. The wider

bandgap material surrounding the well forms the barrier layers. In multiple quan-

tum wells (MQW), a number of these well/barrier combinations are formed, one

after another in alternating fashion (refer to Figure 2.2). MQW regimes are used

to increase the overall gain of a device by consolidating the power produced from

each individual well. This leads to greater output optical power on the one hand,

but higher energy consumption on the other. A superlattice is formed in a MQW

structure when the barrier layers are made thin enough to allow the electrons to

tunnel through (quantum mechanically) causing the discrete energy levels of each

well to broaden into miniature bands. This is known as wavefunction overlap.

Figure 2.2 Type-I and type-II multiple quantum wells. Type-I has spatially aligned
quantum wells. Type-II has spatially offset quantum wells.
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Both type-I and type-II superlattice structures are used in this experiment. A

type-I structure has spatially direct bandgap energies, while a type-II has spatially

indirect band-gap energies (Figure 2.2) . [30]

The QW’s and barriers form a section of the laser device called the active

region, the region where light is produced. Surrounding the active region, another

layer of semiconductor is grown, known as the cladding layers. These layers are

higher in potential energy (wider bandgap) than the barriers and have lower indices

of refraction, allowing the active region to act as a guide to the emitted photons,

trapping them in this region. This active region forms the gain region as shown in

Figure 2.3. [20, 30]

Figure 2.3 Active region layer formed between wider bandgap cladding layers. The
lower indices of refraction of the cladding layers confine optical emission. [30]

2.3 Lasing Condition

Laser action and optical gain occur in a semiconductor because of the nonequi-

librium of carriers that populate the bands. This state is attained as described above.
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The absorption of incident photons is given by the absorption rate as

rabs = P [1− fn(E2)]fp(E1)Np(E) (2.5)

while the stimulated emission rate is given as

rst = Pfn(E2)[1− fp(E1)]Np(E) (2.6)

where P is the transition probability, Np is the density of photons of energy E, and

fn and fp are the Fermi functions given in equations 2.3 and 2.4. For lasing to

occur, there must be more stimulated radiative processes than photon absorption

processes, thus rst > rabs. This condition leads to fn(En) > fp(Ep) where En−Ep is

the transition energy from the conduction band to the valence band. This condition

causes population inversion: where the concentration of electrons in the conduction

band is greater than the concentration of holes in the valence band. The gain,

represented by stimulated downward transitions of carriers, should be at least equal

to the losses, stimulated upward transitions, for lasing to occur. [2]

As the recombination rate increases from optical pumping, stimulated emission

increases, building up the photon density. These photons stimulate further recom-

bination causing light emission to grow. Since the radiation is comprised of both

spontaneous and stimulated emission, multiple frequencies of light exist. There-

fore, the lasing medium is placed in a Fabry-Perot cavity to selectively amplify one

frequency. This cavity provides positive feedback for the selected frequency by pro-

ducing a standing wave at that frequency. The Fabry-Perot cavity is formed by

cleaving the semiconductor along two parallel crystal planes forming almost perfect

mirrors. The initial light produced is amplified as it travels in the cavity between the

mirrors and is fed back into the cavity as it reflects. Lasing happens when the gain

from the medium overcomes the loss in the cavity for a roundtrip of light between
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the mirrors. This threshold gain condition is represented by

gth = γ +
1

2d
ln

(

1

R1R2

)

(2.7)

where γ is the loss in the cavity, d is the cavity length, and R1 and R2 are the front

and back mirror reflectivities. [2]

2.4 Laser Cavity

The general laser structure is made from multiple layers of semiconductor ma-

terial as shown in Figure 2.3. Oscillation (production of the standing wave) in this

kind of structure takes the form of transverse and longitudinal modes. The trans-

verse modes are a result of photons being trapped by the cladding layers along the

direction perpendicular to the layers of the semiconductor as seen in Figure 2.3.

These modes are the propagating modes of the waveguide. Thus, the modes that are

created in this direction are called transverse electromagnetic (TEM) modes. These

modes are governed by the wavefunction solution to Maxwell’s wave equation. The

solution takes the form of a propagating wave

E(r, t) = E(r)ej(ωt−βz) (2.8)

where β is the propagation constant for a wave moving in the z-direction. Substi-

tuting this equation into the Helmholtz equation where the y and z dimensions are

approximated to infinity gives

∂2

∂x2
E(x, y) +

(

k2n2
l − β2

)

E(x, y) = 0 (2.9)

with l = 1, 2, 3 for the three regions I, II, and III (reference Figure 2.4). Here k is

the wavevector 2π/λ and n2 > n3 > n1, where nl is the index of refraction. For wave
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confinement, the condition kn3 < β < kn2 must be satisfied and n2 > n1, n3. This

propagation regime produces β values that are eigenvalue solutions. [2]

Figure 2.4 Three-layer slab-waveguide and zig-zag ray model [2].

The number of confined modes in the active region depend on the values of

n1, n2, and n3, the frequency, and the active region thickness. Therefore, conditions

exist describing which modes can be supported in the waveguide. For a symmetric

waveguide where n1 = n3 and n2 > n1, the condition is

∆n = (n2 − n1) >
m2λ2

16 (n1 + n2) d2
,m = 0, 1, 2, ... (2.10)

where d is the thickness of the active region. A similar expression exists for an

asymmetric waveguide as

∆n = (n2 − n3) >
(2m+ 1)2 λ2

64 (n2 + n3) d2
,m = 0, 1, 2, ... (2.11)

where n3 >> n1. A schematic of the symmetric case is shown in Figure 2.5. [2]

2-8



www.manaraa.com

Figure 2.5 Refractive indices and field profiles in a three-layer dielectric slab waveg-
uide [2].

Longitudinal modes are formed along the length of the active region parallel to

the semiconductor layers. These modes define laser resonance. This is the process

whereby photons generated in the active region oscillate along the length perpen-

dicular to the cleaved “mirror” facets producing gain and thus laser emission. The

cavity is resonant because only certain frequencies (wavelengths) of light are allowed

within it. These resonant frequencies are governed by the cavity length d. The ap-

propriate choice will stimulate a certain wavelength while damping all others. This

condition is

d = qλ/2n q = 1, 2, 3... (2.12)

where λ is the wavelength, and n is the effective index of refraction within the active

region. The resonant frequency follows from this expression as

vq = qc/2nd q = 1, 2, 3... (2.13)

where c is again the speed of light. These frequencies are the longitudinal modes

which are solutions to the Helmholtz equation with appropriate boundary conditions.

The longitudinal mode spacing is obtained by rewriting this expression as vq2nd = qc
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and differentiating to obtain

2d(vqdn+ ndvq) = dqc (2.14)

For adjacent modes, dq = -1 giving

dvq = vf = −
c

2nd
−
vqdn

n
(2.15)

also known as the frequency spacing. [4, 37]

2.5 Ghost Modes

As discussed above, transverse modes exist in the active region of the device

of TE or TM type. Additional transverse modes exist in the device, as well, in

layers outside the active region. This is due to the evanescent penetration of laser

emission into these layers and the ensuing accumulation of such emission. These

modes may become coupled to the lasing mode if the barrier layers separating them

are thin enough. Specifically, cap and substrate layers, having waveguide properties

themselves, are separated from the active region by the cladding layers. Modes that

develop here can couple with active region modes depending upon the thickness of

the cladding layers (reference Figure 2.6). These other modes are called “ghost”

Figure 2.6 Layer schematic of laser device showing “ghost” modes (red) and active
region mode (blue). Red arrows are ray traces representing “ghost” mode oscillation
and blue arrows represent main lasing mode oscillation. [23]
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modes [14]. The cladding layers are usually thin enough that optical penetration

does indeed occur allowing mode coupling. This coupling becomes stronger if the

ghost modes have the same longitudinal frequency and phase velocity as the active

region modes (phase synchronism), and the mode volumes of the two are overlapping.

Ghost modes are attributed with certain cases of high optical losses in certain laser

modes [14]. It is theoretically calculated that, at some conditions of mode coupling,

laser action can be prevented altogether. However, experimental results achieved

by Kaspi et al. [22] have shown that “ghost” mode coupling increases the overall

quantum efficiency (QE) as seen in Figure 2.7. Therefore, it is useful to understand

the coupling process to determine its effect on the overall lasing process and to learn

how to use it to enhance spectral selectivity. [14]

Figure 2.7 Plot of quantum efficiency versus cavity length in a antimony-based
QW device. The overall QE is seen to be higher with “ghost” modes present (+)
than without (4). [23]

To depict how modes interact, examples are used from theoretical calculations

made by Eliseev et al. [14] for laser structures made from GaAs/InGaAs. Their
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results are displayed in terms of the effective index, neff = Reβ/k, where k is

the wave number and β is the complex propagation constant, and the mode gain,

G mod = 2Imβ. Each mode can be represented by its mode profile, its effective

index, and its mode gain. For cap layer coupling, it is seen that because of its

comparable thickness to that of the combined active/cladding layers, lower order

TE modes exist. If this layer can be made thin enough, the laser mode can be made

free of mode-coupling. As this layer increases, the ghost mode appears and coupling

ensues, especially if the cap and active layers have close effective indices. As the cap

layer increases, higher order modes become involved. To show this, neff and Gmod

are both plotted versus the cap layer thickness, d, in Figure 2.8. [14]

The two sets of graphs shown are for two different cladding layer thicknesses.

The upper graphs are plots of neff while the lower graphs are plots of Gmod. The

thickness of the cladding layer defines where the branches (different TE modes

shown) of the neff plots come close to touching. These spots on the graph define the

coupling coefficient and are considered the coupling resonance points. Together, the

two graph sets show how the cladding layer separating the active region and the cap

layer affect mode coupling. The graphs show that at high coupling (corresponding

to smaller cladding layers), the neff mode branches do not intersect, where at low

coupling the branches are close to intersecting. The Gmod plots show intersections at

points lower on the branches for high coupling and at points higher on the branches

for low coupling. In the effective index plots, the vertical sections of the branches

represent in-phase oscillations and the horizontal sections antiphase oscillations near

the coupling resonance points. The active region lasing mode dominates along the

horizontal sections of the branches meaning that sufficient mode gain can only occur

at these cap layer thicknesses. [14]

Substrate mode coupling is similar to that of the cap layer except that the

substrate is much thicker than the cap layer. This means that higher order modes

will be coupled to the active mode. The substrate coupling also produces spectral
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Figure 2.8 Effective index, neff , and modal gain, Gmod, plots versus cap layer thick-
ness, d for two cladding layer thicknesses of (a) 0.6 µm and (b) 0.8 µm. Resonance
points shown where two TE mode branches of neff plots come close to intersect-
ing. [14]
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variation in the laser mode gain. The spacing of spectral peaks corresponds to

different thicknesses of the substrate rather than to the cavity length of the active

region. Again, as with the cap layer, if the mode coupling is very strong, lasing

action will cease. From this discussion, it is seen that ghost mode coupling must be

taken into account when designing semiconductor laser structures. Structures that

have higher optical leakage, i.e., thinner cladding layers, are more vulnerable to this

loss mechanism. Optical leakage grows exponentially as the cladding layers become

thinner. [14]

To investigate the modal development processes and ideas laid out in this chap-

ter, descriptions of experiments devised to do so are presented next. This includes

descriptions of the photoluminescence and laser experiments and the time resolved

photoluminescence experiment.
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III. Experiment

Laser emission from an optically pumped mid-IR semiconductor device results from

the recombination of electron-hole pairs as described previously. This radiative

emission takes place several nanoseconds after the initial excitation. To investi-

gate this process and the subsequent lasing events that occur, the incorporation of a

lasing technique into a time-resolved photoluminescence (TRPL) experiment is at-

tempted. The TRPL experiment uses an upconversion technique developed by Mahr

and Hirsch [25] to resolve sub-picosecond occurrences over a 3-ns time period. This

technique does so by mixing the short pulses of a source laser beam with the longer

photoluminescence (PL) pulses of the semiconductor sample being investigated in-

side a nonlinear crystal. This “light-gate” allows the PL signal to be mapped out

temporally by simply adjusting (delaying) the arrival time of the short laser pulse

as shown in Figure 3.1 [33]. To incorporate laser devices into this experiment, two

other tasks must be performed before TRPL takes place. The first is to character-

ize the semiconductor samples for their peak wavelengths using photoluminescence.

The second task is to develop a technique to stimulate the samples into lasing by

redirecting and reshaping the source beam, processing the samples, and modifying

other equipment. Since the overall experimental setup is designed for TRPL, this

chapter will first discuss upconversion theory. This will be followed by a description

of the setup, which includes the photoluminescnce and lasing modifications.

3.1 Upconversion Theory

Upconversion is the process of generating a beam of light of one wavelength

from two or more beams of differing wavelengths within a nonlinear crystal. This

process is known as sum frequency generation (SFG). For a medium to be nonlinear,

its polarization density should be such that it can be expressed as a Taylor series

expansion:
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Figure 3.1 Wave mixing resulting in the time resolution of the luminescence. (a)
Depicts the luminescence curve over time. (b) Represents the pump beam at some
delay time τ . [18]

Pi = εχijEj + 2εχijkEiEj + ..., (3.1)

where P is the polarization density, E is the incident electric field, ε is the permeabil-

ity of free space, and χ is the susceptibility [41]. The nonlinear crystal used for this

experiment is KTiOAsO4 (KTA) which has second-order and higher nonlinearity in

the Taylor expansion term. Since the higher order terms add little significance to the

overall output, they are neglected. It is found that optical beams treated as plane

waves require two conditions be met as a result of the second order term. The first

is frequency matching, where the pump beam frequency and laser signal frequency

sum to the frequency of the upconverted beam such that

ω3 = ω1 + ω2. (3.2)

This expression can be cast in terms of wavelength to give
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1

λup
=

1

λLaser
+

1

λPump

(3.3)

where λLaser is the signal wavelength, λPump is the pump wavelength, and λup is

the upconverted wavelength. This equation expresses the conservation of energy

required to produce upconversion.

The second condition is phase matching:

⇀

kup =
⇀

kLaser +
⇀

kPump (3.4)

where each
⇀

k is one of the wavevectors (|k| = 2πn/λ) shown in Figure 3.2. These vec-

tors are the corresponding wavevectors to the wavelengths in equation 3.3. Applying

the law of cosines to equation 3.4 and replacing
⇀

k gives

n2
up

λup
=
n2
Laser

λLaser
+
n2
Pump

λPump

− 2
nupnLaser
λupλLaser

cos(π − γ), (3.5)

where nup, nLaser, and nPump are the indices of refraction for each beam and γ is the

angle between the laser and pump wave vectors.

Figure 3.2 Upconverted signal in terms of wavevectors [18].

The indices of refraction for a nonlinear medium vary according to the polar-

ization of the incoming light and depend upon the incident wavelength and angle of

incidence. For KTA, the indices can be expressed in terms of the three principal axis

nx, ny, and nz as functions of wavelengths. The crystal is cut at an angle Φ = 43◦

3-3



www.manaraa.com

between the crystal axis and the normal to the crystal surface in the X-Z plane.

Therefore, according to the Sellmeier equations [16]:

no(λ) = ny(λ) (3.6)

ne(λ) =
nx(λ)ny(λ)

√

nz(λ)2 cos(θ)2 + nx(λ)2 sin(θ)2
(3.7)

where no and ne are the ordinary and extraordinary indices of refractions, respec-

tively, θ is the angle between the extraordinary beam and the z axis, and λ is the

wavelength of the incident light. In the TRPL experiment, the leg used to excite

the sample is ordinarily polarized while the mixing leg is extraordinarily polarized.

The KTA crystal properties cause the resulting upconverted signal to be ordinarily

polarized. This equation is solved for θ given a wavelength and can be changed by

rotating the crystal. To meet the phase matching condition for a given experimental

setup, a MathCad program with these equations is used (see appendix A) to cal-

culate the necessary crystal tilt angle. The experimental setup is described in the

subsequent section explaining how the two legs are mixed and how the upconverted

beam is collected.

3.2 Experimental Setup

3.2.1 Laser Source. The experiment starts with a Coherent Mira 900 mode-

locked Ti:Sapphire laser used as a source beam. This source operates at 1.9 Watts

average power with a repetition rate of 76 MHz and peak wavelength of 810 nm.

The repetition rate corresponds to a sample excitation every 13.2 ns, providing time

to examine the luminescence decay. This laser produces pulses that are 130 fs wide,

which is essential to achieving the level of resolution required by this experiment.

The Ti:Sapphire beam is optically pumped by a Coherent Innova argon-ion (Ar+)

laser operating at 10.8 Watts.
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Two methods are used to measure the pulse width of the Ti:Sapphire laser

and verify the results. First, an INRAD Model 5-14BX Autocorrelator is used. The

autocorrelator produces highly accurate measurement results almost instantaneously

using a computer. In a method analogous to the experiment, the autocorrelator

splits the Ti:Sapphire laser beam into two paths and focuses them into a non-linear

crystal (LiIO3) where they mix, effectively mixing the Ti:Sapphire beam with itself.

This phenomenon is known as second harmonic generation (SHG) and produces a

beam of light at half the wavelength of the original. This frequency-doubled beam

is collected by an appropriate detector and sent to a computer for analysis. The

autocorrelation function is accomplished by varying the path length of one of the

beams of incoming laser radiation. This action performs a convolution of the two

identical beams producing a temporal response. Measuring this response at the full

width at half maximum (FWHM) point, the pulse width is determined, which is

related to the width of the laser pulse in time.

To verify the autocorrelator results, the experimental setup is used in exactly

the same fashion by replacing the KTA crystal with a LiIO3 crystal and focusing the

laser source leg on the cryogenic mount inside the vacuum chamber instead of on a

semiconductor sample (reference Figure 3.3). By varying the pump leg and recording

the output signal collected by a spectrometer fitted with a photo-multiplier tube

(PMT), a similar response is mapped. The two methods are correlated by multiplying

the response of the experiment by 0.648, which results from fitting a sech2 function

to the lineshape of the autocorrelator result. This is done on suggestion of the

manufacturer. The temporal and spectral plots of the Ti:Sapphire source are shown

in Figure 3.4.

To produce both second harmonic generation and sum frequency generation

(upconversion), the focused signal beam and pump beam must overlap inside the

nonlinear crystal (see Figure 3.3). Knowledge of the focused spot size of these path

length legs is thereby necessary to ensure overlap. Thus, the cross section profile of
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Figure 3.3 Schematic of experimental setup showing the cryogenic mount, source
leg, pump leg, and signal beam [12].
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Figure 3.4 (a) Pulse width of Ti:Sapphire laser. FWHM is measured to be ∆tm =
207 fs. The actual pulse width is ∆ta = 134 fs after multiplying by the correction
factor 0.648. (b) Spectral width of Ti:Sapphire pulse of 2.5 nm.

the Ti:Sapphire laser must be measured in order to calculate the focused spot sizes

of the two legs. A Coherent-Mode Master was used to measure the M2 value and

beam cross section along the x- and y- directions. The M2 value is a measure of how

closely the actual beam represents a perfect Gaussian beam. Measurements were

taken at three different positions and averaged to give a final measurement. The

diameter in the x-direction was 6.918 ± 0.0623 mm and in the y-direction was 5.926

± 0.0846 mm. The radial value of this elliptical shape was 6.442 ± 0.0119 mm [11].

The lens used to focus the pump beam into the nonlinear crystal has a focal length
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of 200 mm while the lens used to focus the source beam onto the sample has an

effective focal length of 300 mm. The focal point spot sizes are calculated using the

following equation for a Gaussian beam [11]:

2w =
4

π
·
λf

D
(3.8)

where 2w is the focused beam diameter in the assigned direction, f is the focal

length, and D is the beam diameter entering the lens (values given above). The

calculations for the spot sizes for the two lenses are given in the Table 3.1.

Table 3.1 Calculated spot sizes of 200 mm and 300 mm lenses in the x, y, and
radial directions.

x (µm) y (µm) R (µm)

Pump Beam (200 mm) 29.7±0.27 34.78±0.50 31.99±0.06
Laser Signal Beam (300 mm) 44.68±0.40 52.17±0.74 47.99±0.09

For the Ti:Sapphire laser, the M2 values are 1.20, 1.36, and 1.387 for the x,

y, and radial directions, respectively. This means that the Ti:Sapphire has a waist

that is 1.20 times the diffraction limited Gaussian beam waist in the x-direction,

1.36 times in the y-direction, and so on. [11]

3.2.2 Beam Paths. The beam leaving the Ti:Sapphire travels through a

series of optics before being split into its two respective paths: the source beam path

and the pump beam path. The beam is first expanded and collimated. It then travels

through a half-wave plate, allowing the power division in each leg to be adjusted.

Next, wavelengths below 700 nm are filtered out (reference Figure 3.5). Finally,

the beam passes through the beamsplitter, where it is divided into horizontal and

vertical polarizations.
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3.2.2.1 Signal Beam Path. The signal path contains the laser source

beam, which is the semiconductor sample’s optical pump, and the emission signal,

or the semiconductor’s luminescent emission. The source beam leaves the beam-

splitter vertically polarized, passes through a neutral density filter, and proceeds on

to a gold-coated retroreflector mounted on a moveable stage. Before reaching this

stage, the beam passes through a chopper wheel spinning at 200 MHz when taking

photoluminescence or laser spectra. Otherwise, the chopper is off allowing the beam

to pass unimpeded. From the delay stage, the beam is directed to enter the vacuum

chamber containing the semiconductor samples in one of three configurations.

1. Photoluminescence Configuration. This configuration is the standard setup for

the signal beam path when used for upconversion and photoluminescence.

From the delay stage, the source beam is directed into the vacuum cham-

ber containing the semiconductor sample by a 300-mm focal length lens. This

lens focuses the beam to a point at the surface of the sample, which is mounted

on the flat side of a cryogenic cold finger inside the chamber (reference Figure

3.5). The luminescence of the sample is collected by a gold-coated, off-axis

parabolic mirror. This mirror directs the luminescence to an identical mirror,

which focuses it to the location where a nonlinear crystal will be positioned

when used for upconversion. Each parabolic mirror has a focal length of 150

mm enabling the pair to act as a one-to-one imaging system, with the sample

in the object plane and the crystal in the image plane. From the nonlinear

crystal location, the signal is collected by a CaF2 lens, which passes light in

the IR spectrum, thereby re-collimating it. A second CaF2 lens focuses the

signal on the entrance slit of a 1/2-meter SPEX spectrometer with a 4-µm-

blazed grating. The grating has 300 grooves/mm with a calculated resolution

of 6.67x10−6W where W is the slit width of the spectrometer in millimeters. A

Standard Research Lock-in Amplifier amplifies the signal from a InSb detec-

tor, sending it to a computer for analysis. The amplifier is synchronized to the
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chopper wheel for phase-locked detection. Luminescence spectra were taken

for the five samples under investigation at a pump power of 300 mW and a

temperature of 77 degrees Kelvin. The results are shown Chapter V.

2. Laser Configuration. In this configuration, the beam coming from the delay

stage is directed to enter the cryostat from the side (see Figure 3.6). The

beam is focused onto the semiconductor sample using a two-lens system to

shape the beam into a narrow, horizontal stripe across the cleaved facets of the

sample under investigation. The first lens is 400-mm bi-convex, which initially

focuses the beam. It is placed such that the beam passes through a focus

and diverges into a spot size at the sample of 2 mm, which is the size of the

largest laser cavity. The beam then passes through a cylindrical lens, focusing

it in the vertical direction down to the horizontal stripe (refer to Figure 3.6).

The Beam Code beam profiling system was used to make measurements of

the stripe to ensure the proper shape at the location of the semiconductor

sample. Figure 3.7 shows the profile of the beam in the x- and y- directions.

It is measured to be 2.05-mm wide at the 1/e2 points of the Gaussian beam.

The horizontal stripe is positioned to be perpendicular to the cleaved facets of

the semiconductor sample resulting in the formation of a gain-guided optical

waveguide along this direction. This waveguide forms the laser cavity of the

sample enabling laser emission.

This configuration required the mounting surface of the cold finger to be

positioned at an angle slightly off normal to the entering beam. This enables

the laser emission generated at the sample’s edge to be collected by the off-axis

parabolic mirror, 90◦ from the source beam. The laser emission is directed as

before to a focus at the location of the nonlinear crystal. When looking for laser

emission, the crystal is removed allowing the emission to travel down the PL

path described in part 1 where it is sent into the spectrometer and subsequent
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Figure 3.5 Photoluminescence configuration. The flat surface of the sample mount
is positioned normal to the off-axis, parabolic mirror. The photoluminescence gen-
erated is collected by a series of CaF2 lenses and sent to a spectrometer for evalua-
tion. [12]
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Figure 3.6 Laser configuration. The laser source beam is directed into the cryostat
from the side, passing through a 200 mm biconvex lens and a 100 mm cylindrical
lens forming a horizontal stripe. The surface normal of the cold finger is positioned
at a slight angle to the incoming beam.
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Figure 3.7 Laser source focused to a horizontal stripe. Profile along x axis shows
a beam diameter at the 1/e2 point of 2.049 mm.

detector. In this way, spectra can be taken over the luminescence wavelengths

of the samples to look for lasing modes.

3. Luminescence Upconversion Configuration. This configuration is the standard

setup used for upconversion when using the luminescence of the semiconduc-

tor sample. From the second parabolic mirror, the beam is focused into the

nonlinear crystal mounted on a rotation stage, where it mixes with the pump

beam described in the next section. When conducting the TRPL experiment,

the path length of the source-signal leg becomes important as it must be com-

parable to the pump beam path. Using the delay stage encountered earlier in

the source path (Figure 3.8), this leg can be adjusted so that luminescent emis-

sion can be mapped (described previously). Using a second, two-dimensional

retro-reflector at the top of the stage, the optical path length of the beam can

vary by 4 ns in time. The combination of the two retro-reflectors causes the

beam to pass through the delay stage twice, or a total of 120 cm. Dividing

this length by the speed of light gives this 4 ns variance.
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Figure 3.8 Experimental set up in the TRPL experiment. The Ti:Sapphire laser
creates a 130 fs pulse that is split into two paths. The laser signal beam travels
through a delay stage before exciting the sample. Luminescence is collected and
mixed with the pump beam in the KTA crystal. The upconverted beam is then
directed to the spectrometer and photon counter. [12]
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3.2.2.2 Pump Beam Path. The pump beam is horizontally polarized

when it leaves the beamsplitter. As mentioned previously, it travels an optical dis-

tance similar to the source-signal beam path. A 200-mm focal length lens is used

to focus the beam to a spot within the nonlinear crystal, shown in the schematic

(Figure 3.8). A prism is used to redirect the beam into the crystal at an angle of 20◦

with respect to the signal beam. This angle is used in equation 3.5 to find the tilt

angle of the crystal required for upconversion. At this angle, the pump beam mixes

with the signal beam to create the upconverted signal.

3.2.2.3 Beam Collection and Overlap. To produce the upconverted

beam, the two signal paths must overlap in time and space within the nonlinear

crystal such that the two optical waves interact with one another according to the

phase matching and frequency matching conditions (equations 3.2 and 3.4). To align

the two beams in space, a 25-µm pinhole is placed at the position of the nonlinear

crystal and the two beams are focused through it. The size of the pinhole ensures

sufficient beam overlap as both beam spot sizes are larger in both x and y directions,

requiring that they exist at the same position in space to pass through the pinhole.

Once the beams are aligned as such, the retroreflector delay stage must be

adjusted so that both beams are aligned in time. To do this, the LiIO3 crystal is

mounted as the nonlinear crystal and the delay stage is incrementally positioned

until the SHG signal occurs (reference Section 3.2.1). This signal is in the visible

spectrum so that it is easily seen when the the two paths are overlapping in time.

With this, alignment in time and space is confirmed.

The upconverted beam is collected by a 400-mm focal-length lens which fo-

cuses the beam to the slits of a 3/4-meter SPEX spectrometer. Before reaching

the spectrometer, it passes through an 800-nm filter to remove residual Ti:Sapphire

wavelengths, and through a periscope to bring it to the proper level of the slits. The

spectrometer grating has 1200 grooves/mm which gives a resolution of 3.3 nm at a
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slit width of 3 mm. The signal is then collected by a GaAs PMT chilled to 0◦C and

biased at 2000 V. The PMT converts the signal into an electrical signal which is

amplified and sent to a Standard Research SR400 photon counter which interfaces

with a computer to control the experiment. The spectrometer grating or the delay

stage can be incremented while taking photon counts.

With these descriptions of the experimental arrangements set forth, the sam-

ples being investigated are presented in the next chapter. This chapter includes the

material makeup and structural design of the five samples followed by the prepara-

tion of each for input into the experiment.
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IV. Samples and Sample Preparation

Five different samples were investigated in this experiment. Samples 201-056 and B

were provided by Lincoln Laboratory at the Massachusetts Institute of Technology

(MIT). Samples R0-62, R1-73, and R2-43 were provided by the Directed Energy

Directorate of the Air Force Research Lab at Kirtland Air Force Base, New Mexico

(AFRL/DE). Each was investigated using the experiments described above in an

attempt to achieve laser emission to characterize modal behavior. [23, 35]

4.1 Sample Description

The samples are divided into categories based on their type and waveguiding

ability. The type defines the conduction band and valence band energy profiles. In

a type-I structure, the quantum wells formed in the two bands are spatially aligned

meaning the the electrons and holes will be confined in the same material layer of

the device. In a type-II structure, the wells are offset, with the electrons confined in

one material layer and the holes confined in the adjacent material layers (reference

Figure 2.2). Only sample B is a type-I structure while the rest are type II.

The two types of light-guiding used are tight and dilute waveguides. A tight

waveguide makes use of cladding layers as described in Section 2.2. This confines

the TEM optical modes to the active region of the device with minimal leakage into

the outer layers. Dilute waveguides use only the GaSb cap and substrate layers for

confinement which allows evanescent leakage of the TEM modes into them. Samples

B and R0-62 are tight waveguide structures and samples 201-056, R1-73, and R2-43

are dilute waveguide structures. The structural makeup of the samples are shown

using diagrams in Figures 4.1 through 4.4. A schematic of the waveguide types is

shown in Figure 4.5.
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Figure 4.1 Sample 201-056 energy band and refractive index diagram drawn to
scale. This sample is a type-II, dilute waveguide structure. [18, 27,35,38]

4-2



www.manaraa.com

Figure 4.2 Energy band and refractive index diagram for samples R1-73 and R2-43
drawn to scale. These samples are type-II, dilute waveguide structures. [17,23,27,38]
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Figure 4.3 Sample R0-62 energy band and refractive index diagram drawn to scale.
This sample is a type-II, tight waveguide structure. [17, 23,29,38]
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Figure 4.4 Sample B energy band and refractive index diagram drawn to scale.
This sample is a type-I, tight waveguide structure. [12, 35]
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Figure 4.5 Tight waveguides having cladding layers shown in gray and dilute
waveguide having no cladding layers.
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4.2 Sample Preparation - Etching

The three structures provided by AFRL/DE require an optical pump emitting

at wavelengths larger than 1.709 µm to penetrate through the GaSb cap layer into

the active region. In order to make these samples compatible with the experiments

presented, the cap layers of the samples were etched to a depth which allowed wave-

lengths of 800 nm to penetrate into the active region. According to the condition

for absorption in a semiconductor, the small signal gain is related to the thickness

of a semiconductor layer by

G = exp(γd) (4.1)

where G is the small signal gain, γ is the gain coefficient and d is the layer thickness

[37]. When loss occurs, γ becomes −α representing loss in the material. For GaSb

at λ = 800 nm, α = 4x104 cm−1, where, for 50% absorption, the thickness of the cap

layers must be 173.3 nm or less. With this in mind, the three samples were etched to

remove as much of the cap layers as possible while retaining optical confinement. The

cap layer of sample R0-62 was completely etched off because the structure retains

cladding layers to confine the optical lasing modes. Samples R1-73 and R2-43 where

etched to a depth of 3.984 µm leaving only 16 nm of the cap layer. Using equation

4.1, this translates to a loss of only 6.2% of the Ti:Sapphire pump.

Etching of the GaSb cap layers was carried out in collaboration with the

Aerospace Components Division of the Sensors Directorate, Air Force Research Lab,

Wright-Patterson Air Force Base, Ohio (AFRL/SND) by first etching a piece of

GaSb bulk material to determine the etch rate of the reactive ion etch (RIE) used.

The process is as follows:

1. The sample is cleaned by placing it in a spindle device rotating at 500 rpm.

The sample is rinsed in the following solutions while spinning:

(a) Acetone - 30 seconds
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(b) Isopropyl Alcohol - 30 seconds

(c) Distilled water - 30 seconds

2. Photoresist (Shipley #1813) was applied in two spots followed by a 5 minute

bake on a hot plate (reference Figure 4.6)

Figure 4.6 Shape of GaSb test piece used for etch study with approximate locations
of 1813 photoresist.

3. The sample undergoes a plasma ash for 4 minutes with an oxygen flow rate of

200 standard cubic cm (sccm) at 200 watts of RF power.

4. The sample was placed in the reactive ion etch for 5 minutes

5. Once the etching was complete, the resist was removed and measurements of

the etch depth were taken using a profilimeter.

The depth of the etch was determined to be 24.9 µm, giving an etch rate of 4.98

µ/min. This rate was used to attain the etching depths given above.

4.3 Sample Preparation - Cleaving

In addition to providing sufficient optical stimulation via the source beam, a

resonant cavity is needed to produce stimulated emission. As discussed in Section

2.3, this cavity is formed when the photon-producing medium is placed between two
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perfectly parallel reflecting surfaces. For the samples here, the reflecting surfaces

are created by cleaving the samples along two parallel crystal planes. This action

produces perfectly parallel facets that are highly reflective. When the source beam

stripe is applied perpendicular to these surfaces, an optical waveguide is formed

confining photons to the focused stripe area. Under optimal conditions, resonance

takes place and lasing occurs. The separation between these facets is known as

the cavity length. This length is used in determining the settings of the detection

spectrometer and dictates the resolution needed to see the longitudinal lasing modes.

Using equation 2.13 and the relation λ = c/ν, an equation for the wavelength spacing

of the modes is given by

∆λ =
λ2

2nd
(4.2)

where λ is the peak wavelength, n is the index of refraction of the active region,

and d is the cavity length [37]. Using this equation with that for the wavelength

resolution of the spectrometer

∆λ =
aw

fm
(4.3)

the required slit width settings of the spectrometer can be determined. In this

equation, a is the groove spacing of the spectrometer diffraction grating, w is the

spectrometer slit width, f is the spectrometer focal length, and m is the order of

spectra reflected by the grating [26]. The cavity lengths for samples R0-62, R1-

73, and R2-43 are 2 mm, sample 201-056 is 1.5 mm and sample B is 1mm. The

results of experimentation using the theory and settings discussed up to this point

are presented in the next chapter.
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V. Results and Analysis

In this chapter, the results of the experimentation discussed in Chapter III are pre-

sented. First, the results of the computer models generated for the three different

laser structures are presented. Next, the results of the PL data and lasing data are

given. Finally, the results of the upconversion experiment and setup are shown.

5.1 Modelling Results

The results of models produced by Mike Tilton of AFRL/DE showing the

mode development in the etched waveguides are given in Figures 5.1 and 5.2 [23].

These models predict only the development of ghost modes and indicate that the

main lasing modes in the active region cannot be supported. Only the two lowest loss

modes are shown having approximately the same gain. Furthermore, Tilton suggests

that any lasing that does occur through these ghost modes will not be detectable.

Figure 5.1 Model of TE modes in sample R1-73. Only ghost modes are predicted
as shown by the two lowest loss modes. [23]
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Figure 5.2 Model of TE modes in sample R2-43. Again, only ghost modes are
predicted as shown by the two lowest loss modes. [23]

5.2 PL Results

With the experimental setup configured to take photoluminescence spectra as

described in Part 1 of Section 3.2.2.1, five plots were taken corresponding to the five

samples. The source beam was applied at 300 mW and the samples cooled to 77K.

The spectra are plotted together on one graph to show the wavelength span each

encompasses relative to one another. Each is scaled along the intensity axis to be

easily read; this does not represent the true relative scale each has to another. From

the spectra (Figure 5.3), peak wavelength values are determined as shown in Table

5.1.

Table 5.1 Characteristics of samples under investigation.

Sample Peak QW QW Thickness (Å) Waveguide Active Region
Wavelength (µm) Type electrons(holes) Type Effective Index

B 3.16 I 100 Tight 3.87
201-056 3.89 II 21.5(24) Dilute 3.88
R1-73 3.76 II 21(24) Dilute 3.88
R2-43 4.55 II 21(24) Dilute 3.88
R0-62 4.125 II 21(24) Tight 3.88
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Figure 5.3 PL Spectra of the five different samples investigated. Relative intensi-
ties are not to scale.
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5.3 Spontaneous Emission Results

Converting the experimental setup to the lasing configuration, the transformed

Ti:Sapphire beam is applied to the samples as discussed in Chapter III. Using the

peak wavelengths, the spectrometer is set to the proper resolution calculated from

equation 4.3 for each sample. These settings are shown in Table 5.2.

Table 5.2 Spectrometer slit widths and grating increments used in data acquisition
of emission spectra.

Sample Slit Width (µm) Grating Increment (nm)

R0-62 151 0.5
R2-43 184.5 1
R1-73 216 0.5 to 1 (varied)
201-056 195 0.2
B 193 0.1

The calculated slit-width settings are the largest that can be applied and still

maintain the resolution needed to see Fabry-Perot resonances. The procedure for

aligning the laser source beam onto a sample starts after the proper stripe has been

formed and verified by the Beam Code system as described in Section 3.2.2.1. The

mounted sample is positioned by translating the vacuum chamber along the x,y, and

z axis until the stripe lies horizontally across the cleaved facets of the sample. The

slits of the spectrometer are then opened fully, and the cylindrical lens rotated about

its optical axis until a maximum signal is detected. The three-axis position of the

sample is next fine tuned until the detected signal is maximized. These four actions

are repeated as necessary until the maximum possible signal is detected. Afterward,

the slits of the spectrometer are closed to the correct width and data is taken. If no

lasing is seen, the adjustments are repeated until lasing occurs or further adjustments

are exhausted.

Data taken for samples R0-62, R1-73, and R2-43 (shown in Figures 5.4 through

5.6) correlate with the model predictions presented in Section 5.1, i.e., that lasing

will not occur.
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Figure 5.4 Spectra of Sample R0-62 taken as the spectrometer slit width is varied
at a pump power of 720mW and temperature of 77K. No lasing or mode development
is seen.
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Figure 5.5 Spectra of Sample R1-73 taken as the spectrometer slit width is varied
at a pump power of 720mW and temperature of 77K. No lasing or mode development
is seen.
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Figure 5.6 Spectra of Sample R2-43 taken as the spectrometer slit width is varied
at a pump power of 720mW and temperature of 77K. No lasing or mode development
is seen.
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Evidence of stimulated emission cannot be seen in these plots as would be seen

by Fabry-Perot oscillations along the crest of the PL curves. These oscillations are

the longitudinal modes, discussed earlier, starting to form. The spectrometer slit

width required to see oscillations, should they occur, cause these spectra to be very

noisy because of the low intensity emitted by these samples. As the slit widths of the

spectrometer decrease, less light is able to enter and soon only very high intensity

light is able to pass into the spectrometer. From the light that does pass, only light

at the appropriate wavelengths determined by the position of the grating are passed

to the detector. Were stimulated emission to occur, the amount of light passed into

the spectrometer would increase, raising the signal further above the background

noise and, thus, causing the spectrum to be cleaner.

Because stimulated emission was not seen, the source beam power was in-

creased in an attempt to reach lasing threshold. Cooling of the samples to liquid

helium temperatures was also tried for this purpose. The spectra collected for sam-

ples R0-62, R1-73, and R2-43 varies little from that shown in Figures 5.4 through

5.6, indicating that only spontaneous emission is possible from these three samples

using this experimental setup.

5.4 Stimulated Emission Results

Higher powers and lower temperatures did prove to work on samples 201-056

and B. The source beam power was increased to 2.37 watts, which is its maximum

operating power. At this level, the signs of stimulated emission are seen in the Fabry-

Perot mode development (oscillations) along the PL crest (see Figures 5.7 and 5.9).

These oscillations are verified as being the formation of longitudinal modes when the

samples are cooled to 7 K. The modes that occur at this temperature consistently

overlap those at the higher temperature, showing the repeatability of the occurrence.

This, in turn, confirms the detection of longitudinal modes and stimulated emission.

5-8



www.manaraa.com

Plotting the spectrum versus frequency, the mode spacing is determined by

taking the difference between mode peaks over the ridge of the spectrum and aver-

aging. The mode spacing (longitudinal) is governed by equation 2.15 and is found to

be 170.75 GHz for sample 201-056 and 169.37 GHz for sample B. This correlates well

with the calculated spacing of 171±1.7 GHz and 171±1.1 GHz for the two samples,

respectively. These values do not account for the uncertainty in the effective index

of the active region, which were provided by the sample growers (see Table 5.1).

Figures 5.7 to 5.9 show Fabry-Perot resonance for the two samples.
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Figure 5.7 Spectra of Sample 201-056 taken at 80 and 10 K with 2.37 W excitation
power. Longitudinal Mode development is seen along the crests of the two spectra.
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Figure 5.8 Close-up of spectra showing a high degree of mode overlap, confirm-
ing repeatability and thus mode formation. The longitudinal mode spacing is
170.75±1.36 GHz.

As can be seen from Figure 5.7 for sample 201-056, lasing does not occur at

the maximum pump power at low temperatures. This is attributed to retaining the

2300-Å GaSb cap layer having a bandgap energy of 0.726 eV. From equation 4.1,

60.1% of the Ti:Sapphire optical pump beam is absorbed in this layer due to being

at a higher photon energy of 1.524 eV. Ideally, a pump having a photon energy

less than 0.726 eV, or a wavelength higher than 1.709 µm, is used to penetrate into

the active region and stimulate emission. Comparing the spectra of samples R0-62,

R1-73, and R2-43 (Figures 5.4–5.6) with sample 201-056, it is seen that retaining
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Figure 5.9 Spectrum of Sample B taken at 77 K with 2.37 W excitation power.
Longitudinal mode development is seen along the crests of the spectrum. The mode
spacing is 169.37±0.58 GHz.
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the cap layer of such structures is more beneficial than removing it because of the

optical confinement it provides for stimulated emission. However, this layer must

be transparent to the optical pump for enough energy to penetrate into the active

region to produce lasing.

Even though lasing from sample 201-056 was not seen, the input power was

varied for completeness to define where the modes cease to occur, indicating at what

pump power stimulated emission transitions back to spontaneous emission. Figures

5.10 and 5.11 show this transition to take place near a pump power of 200 mW.
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Figure 5.10 Spectra of Sample 201-056 taken as the source beam power is decreased
from 2.37 W to 0.1 W.
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Figure 5.11 Close-up of Sample 201-056 spectra showing longitudinal modes ceas-
ing to occur at 0.2 W.
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5.5 Lasing Results

For sample B, it was found that laser emission did occur when the sample was

cooled down to liquid helium temperatures. Figure 5.12 shows that the temperature

drop allows population inversion to take place as is evident by the large peak in

intensity that develops. The peak is actually made up of two lasing modes, which

suggests that the gain could be increased further. From this point, the power was

also varied to find where lasing ceases. An interesting occurrence was seen as this

action was performed (Figure 5.13). At power levels between 2.37 W and 1.5 W,

the lasing spectra changes little. At 1.5 W, the intensity peak of the lasing mode

jumps to a higher level. From this power down, the peak steadily decreases until

lasing ceases and only luminescence remains. This phenomenon is repeatable and

is attributed to the heating that occurs when pumping at higher powers. A limit

to the amount of energy that can be imparted to the system and transferred to

the radiative emission process exists. Once this limit is passed, radiative transitions

are saturated and non-radiative transitions increase. These non-radiative transitions

impart energy into the semiconductor device in the form of heat. As the heat of the

device builds, non-radiative recombination is increased even further.

5.6 Gain Calculation

The gain seen in Samples B and 201-056 is calculated using a technique de-

veloped by Hakki and Paoli [19] that incorporates the peak-to-valley ratio of each

successive set of Fabry-Perot peaks in the intensity spectrum. The expression for

the net gain is given by

ΓGi =
1

L
ln

(

r
1/2
i + 1

r
1/2
i − 1

)

+
1

L
lnR (5.1)

which is a function of wavelength. Here, L is the cavity length, R is the mirror

reflectivity of a cleaved facet, ri is the peak-to-valley ratio of the modes, and Γ is
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Figure 5.12 Spectra of Sample B taken at temperatures of 77K and 5K. Lasing is
seen to occur at 5K as evident by the large intensity spike.
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Figure 5.13 Spectra of Sample B taken at a temperature of 8K under varying pump
powers. Saturation occurs at a pump power of 1.5 W and laser output is decreased
at higher pump powers.
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the electromagnetic filling factor. The mirror reflectivity was calculated using the

equation R = (1− nr)
2/(1 + nr)

2 for the air/active region interface where nr is the

index of refraction of the active region as given in Table 5.1. The peak-to-valley

ratio is computed by taking the average of the maximum values of two consecutive

peaks, Pi and Pi+1, and dividing by the minimum value of the intermediate valley,

Vi, to give the expression

ri =
Pi + Pi+1

2Vi
. (5.2)

This ratio represents the depth of modulation at each wavelength along the spectrum.

The filling factor is also a function of wavelength and is found by solving the

electromagnetic boundary value problem for TE and TM modes in a waveguide. For

the TE case, Γ is given by

ΓTE =

(

1 +
sin(2Ψ)

2Ψ

)

[

1 +
1

Ψ′

(

A cosΨ2

Ψ

)2
]

−1

(5.3)

where Ψ = kx/2d and Ψ′ = (A2 − Ψ2)1/2 are found by solving the characteristic

equation for the TE case, ΨtanΨ = Ψ′, where kx is the wavevector in the x-direction

and d is the active region thickness. For the TM case, the characteristic equation

becomes (1 − ∆nr/nr)
2ΨtanΨ = Ψ′ where ∆nr is the difference in the refractive

indices of the active region and the surrounding layers. For this case, the filling

factor becomes

ΓTM =
ξ

ξ + ζ
(5.4)

where

ξ = 1 +

(

1 +
2Ψ2

Ψ2
0

)

sin 2Ψ

2Ψ
,
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ζ =

(

1−
Ψ2

Ψ2
0

+
Ψ′2

Ψ2
0

)(

1−
∆nr
nr

)

−4
cos2 Ψ

Ψ′
,

Ψ0 =
2πnrd

λ
.

Incorporating this technique into Matlabr programs “Gainmodel2.m” and “Gain-

model2H.m” given in appendix B, the gain was computed for the TE and TM cases

of both samples and is plotted versus wavelength in Figures 5.14 through 5.16. It is

noted that the wavelength span shown in the plots does not span the full spectrum

originally collected for these samples under the conditions shown. This is due to

the Fabry-Perot modes being unresolvable out at the tails of the spectra. Thus, as

many of the modes as can be resolved are included in the computation of the gain

curves. The mirror reflectivities used were 0.348 and 0.347 for samples 201-056 and

B, respectively. [19]

The jagged appearance of the curves is due to the low definition of the modes

seen in the intensity spectra. Peaks and valleys are not well defined and cause the

curves to fluctuate as shown. However, the overall shape of the curves is as expected

for semiconductor laser gain curves. Loss is not seen and would be represented by

negative gain values. Again, this is due to the noisy signal in the emission spectra,

where Fabry-Perot resonance in the tails could not be resolved. If the tail sections

could be included, it is expected that loss would be seen.

The occurrence of lasing confirms that the technique suggested in Section

3.2.2.1 was successful. This implies that laser structures can potentially be incor-

porated into the TRPL experiment. However, optically pumped lasing with the

Ti:Sapphire pump source was only marginal with only one sample. A more appro-

priate source would be a fs-source operating at a 2µm wavelength.
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Figure 5.14 Gain curves of Sample 201-056 at 80K for the TE and TM modes.
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Figure 5.15 Gain curves of Sample B at 77K for the TE and TM modes.
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Figure 5.16 Gain curves of Sample B at 8K for the TE and TM modes.
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5.7 Upconversion Results

To frequency up-convert laser emission in the TRPL experiment, it is first re-

quired to have TRPL in good working order. To accomplish this, Sample B is used

because of its high luminescence signal as compared to the other samples. Sample

B has also been investigated using the experiment previously, and has supplied a

baseline needed to distinguish whether or not the experiment is properly set up and

running. The optical alignment is carried out as described in Chapter III. The crit-

ical aspects of this experiment lie in positioning the non-linear crystal to the correct

rotation angle, as called for by the governing equations, while overlapping the pump

and signal beam to within ±12.5 µm within the crystal for wave mixing. The angle

is calculated to be 16.3◦. Since the luminescence of the sample contains multiple

wavelengths, angles to either side of this can be used. Therefore, the planar accep-

tance angle must be calculated to determine the range of angles where upconversion

is expected to be seen. First, the solid angle that upconversion can take place over

is calculated. This angle is centered around the phase-matching angle and is given

by

∆φ =
2.78nλpl

L

(

1−
nλSFG
θnλpl

) (5.5)

where L is the crystal thickness [33]. The indices of refraction seen by the two

entering beams depend on their respective wavelengths. For the PL beam, n = 1.75

and for the upconverted beam, n = 1.81. The calculated acceptance solid angle is

thus ∆φ = 0.021 steradians which is converted to a planar angle of

θmax = cos−1

(

1−
φ

2π

)

= 4.686◦. (5.6)

Under these conditions, upconversion of the PL signal from sample B was found

to occur at 16.5 ± 1◦ which is within the calculated rotation window of 16.3 ± 4.7◦.
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The upconverted signal is seen in Figure 5.17. At time delays less than 0 ps, no

signal is detected as is expected. At 0 ps, where both path lengths of the TRPL

experiment are equal, the signal jumps up in intensity. From this zero time delay

point on, the signal is seen to quickly reach its peak value and then slowly die off

as is expected. This confirms the production and detection of the upconverted PL

signal and shows the time decay of that signal. Attempts were made to refine this

signal, but due to time constraints, further optimization was not acheived.

With this success and the successful development of a technique to produce

laser emission from Sample B, the building blocks to study QW laser structures using

the TRPL experiment are now in place.
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Figure 5.17 TRPL signal of sample B on 7 Nov 02.
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VI. Conclusion

The objective of this research was to study the modal development of mid-IR laser

structures using ultra-fast spectroscopy to see how “ghost” modes effect the overall

output. The goal was to incorporate a laser structure into a time-resolved photolu-

minescence experimnent in order to do so. This chapter summarizes this effort and

presents suggestions for future work.

6.1 Summary

Five laser structures were studied with the intent of producing laser emission

from each. The transverse mode development was first predicted using a model for

the dilute wave-guide structures with the cap layer etched away. Although etching

the cap layer was necessary for penetration of the pump laser into the active region,

only “ghost” modes were predicted by the model under this configuration, and de-

tectable laser emission was not expected. The TRPL experiment was modified by

first taking PL spectrums of the samples to obtain an estimate of the lasing wave-

length. Next, the optical path of the pump beam was modified to stimulate lasing

from the samples. The samples were also prepared, to aid in this process, by cleav-

ing the structures along two parallel crystal planes forming Fabry-Perot resonant

cavities. Data taken from the etched samples show no laser emission, as predicted

by the model. The removal of the cap layer significantly reduces the device’s ability

to confine optical radiation and thus to lase.

Laser emission was seen from the two types of structures that remained un-

etched. For the type-II laser, stimulated emission was seen below threshold in the

form of Fabry-Perot resonance, but lasing was not acheived. This sample retained

a 2300-Å cap layer of GaSb, absorbing enough of the optical pump to keep it from

attaining population inversion and, thus, lasing. For the type-I laser, population

inversion was created producing laser emission. Data taken for this device showed the
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effects of non-radiative processes as the optical pump power levels were varied. High

powers produced sub-lasing emission, while lower powers produced a well defined

emission peak. This indicates that non-radiative transitions become dominant at

higher powers causing device heating and lower emission. Using the emission spectra

of the two un-etched samples, the gain was computed for the TE and TM cases.

Both samples show gain curves consistent in overall trend with expected results.

The complete gain curve could not be determined since the tails of the emission

spectrum cannot be included due to poor resolution.

TRPL was attempted as the final step in the process, using the frequency

upconverted signal of sample B as a baseline to verify that correct alignment of the

experiment. Upconversion was achieved at a nonlinear crystal tilt angle of 16.5 ±

1◦. The success of laser production and PL upconversion from this sample lays the

necessary groundwork for the investigation of modal development in semiconductor

QW laser devices using TRPL.

6.2 Future Work

To further work on this project, two areas of the experiment need attention.

Foremost, the experiment must be fine tuned to achieve a well-defined upconversion

signal. This can be done by paying careful attention to the optical alignment to

achieve the proper overlap inside the nonlinear crystal. Secondly, a source laser

operating in the 2-µm wavelength range is needed to prevent absorption in the GaSb

cap layers of the devices. This will enable the proper stimulation of the active

region while retaining the optical confinement needed to produce lasing. This source

must also retain sub-pico-second pulses for the experiment to work properly. To

accomplish this, an optical parametric oscillator (OPO) could be used to convert

the wavelength of the Ti:Sapphire laser. Alternatively, the GaSb cap layers of the

samples could be replaced with an oxide, such as TiO2, to prevent absorption.
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The success of laser production shows that the TRPL experiment can be modi-

fied to produce such emission. It is expected that upconversion of this laser emission

will produce much stronger TRPL signals. Therefore, to increase laser emission,

the optical pumping technique should be modified to include a larger focal-length

cylindrical lens. The current lens requires placement very near the vacuum cham-

ber, limiting its movement and preventing the focused strip from being fine tuned.

Incorporating a larger focal-length lens will allow more movement allowing the laser

stripe to be better focused.

With these modifications, the TRPL experiment can be expanded to better

investigate laser devices. This includes further study of the lasing roll-over that

occurs as a function of pump power. This phenomenon may prove to be linked with

the TEM mode development in laser devices, giving insight into “ghost” modes and

their nature. Once configured for lasing, the TRPL experiment will be a valuable

tool for mode investigation.
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Appendix A. Calculation of Non-Linear Crystal Tilt Angle
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Appendix B. Gain Calculation Programs for TE and TM Modes
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for many Air Force applications which include infrared (IR) countermeasures in particular.  Countermeasure applications require lasers that are compact, and able to 
emit at high powers while operating at room temperature.  Limits to power increases are seen in the transverse modal development of laser oscillation.  These modes 
typically form in the waveguiding active region contributing to the laser output.  However, competing modes outside of this region also develop when the confining 
structural layers have the right characteristics.  These competing modes may draw power away from the main lasing mode, causing efficiency to drop. Therefore, 
theoretical models indicate that these “ghost”  modes should be extinguished. The goal of this work is to incorporate antimony-based semiconductor laser devices into 
a time-resolved photoluminescence (TRPL) experiment to examine modal development immediately after excitation. TRPL utilizes a non-linear wave mixing 
technique known as frequency upconversion to resolve sub-picosecond luminescence occurrences after excitation. Modification to the experiment is performed to 
produce laser emission from five mid-IR semiconductor laser samples. Both spontaneous and stimulated emission spectra are recorded. Alignment of the experiment is 
also carried out to produce upconversion of the PL signal to prepare for the incorporation of laser emission. 
       InAs/InGaSb quantum well laser devices were studied in four categories: dilute and tight waveguide structures, and type-I and type-II energy band geometries.  
Models are obtained to predict mode development and possible ghost mode resonance in the dilute waveguide case. It is seen here that dilute waveguides generate 
ghost modes because of the evanescent leakage and subsequent trapping of optical radiation in the cap and substrate layers. This data is then compared to the actual 
behavior of the samples. Lasing is found to occur in the type-I, tight-waveguide case at low temperatures, while only sub-threshold emission is seen for the type-II 
dilute-waveguide. This is attributed to the absorption of the optical pump in the GaSb cap layer of the type-II device.  Samples having no cap layers to prevent 
absorption showed only spontaneous emission as was predicted by modelling. The longitudinal mode spacing in emission spectra was measured and found to coincide 
with calculated values. Gain calculations were also performed using the Fabry-Perot resonances for the samples producing stimulated emission. 
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